

Introduction

- New technology brings great benefits but also new risks
 - Various attempts have been made to quantitatively or qualitatively assess risks, e.g. Probabilistic Risk Assessment
 - These method have been criticized for neglecting social aspects of risk: they requires a value judgment on what risk to accept
 - They further neglect 'public acceptance'
- Public distrust safety of nuclear reactors engendered a discussion on safety, culminating in designing safe reactors
- Opposition by the public is often seen as potential obstacle
 - Public acceptance has sometimes been reduced to "marketing methods to maximize the likelihood of successful introduction" of technologies (Schulte et al. 2004)

Thesis: what good governance needs

- Social acceptance is a necessary but not sufficient criterion
 - There are important ethical aspects that it might overlook
- There are ethical analyses of new technology
 - But they are often conceptual analyses and lack empirical insights
- Good governance of risky technology requires us to bridge the proverbial gap between these islands in the literature

Some definitions

- Social acceptance refers to the fact that a new technology is accepted – or merely tolerated – by a community.
- Ethical acceptability refers to a conceptual reflection on the technology that takes into account the moral issues that emerge from the introduction of new technology.

Structure of the talk

- Part 1: a review of social acceptance studies
 - And what they presumably cannot do
- Part 2: the case of multinational nuclear waste repositories
 - To illustrate why social acceptance is insufficient
- Part 3: a review of ethical analyses
 - And their lack of empirical input
- Part 4: A proposal to bridge the acceptance-acceptability gap
 - Wide Reflective Equilibrium
 - Relevance for the ethics of radiation protection
- Part 5: How to specify values, principles and guidelines

Part 1:

What social acceptance studies can't do

1. Incomplete or faulty information

- Acceptance could be based on incomplete or faulty information
- Case: Uranium enrichment facility in Louisiana
 - Local communities were requested to "nominate potential sites for a proposed chemical facility"
 - First problem: communities were never informed about the nature of these facilities
 - Second problem: no quantitative or qualitative risk assessment were presented: "it was impossible to know, reliably, the actual risks associated with the plant"
 - Case drawn from (Wigly and Shrade-Frechtte 1996)

2. Which public

- Which public should accept the new technology?
- In the Louisiana case, the opinion of host communities very close to the proposed facilities were not considered
- More generally, social/public acceptance stems from the ethical foundation of *informed consent*
 - When autonomous human-beings are being exposed to risk they
 i) should be fully informed and ii) they should consent to it
 - This principles comes from biomedical ethics, but its expansion to 'ethics of technology' highly problematic, because 'informed consent' is based on individual veto power

2.

- Which public should consent to new technology?
- Studies on 'acceptability of renewable energy' show that often nation-wide there is a consensus, while there a opposition at the local level
 - Of course, this does not mean that local communities should be overruled, because local minorities might be the ones directly affected by a technology
 - Example drawn from (Walker 1995)
- Different people uphold different values, and they have different interests
 - Whose opinion(s) should be decisive?
 - This is also the case in the ongoing shale gas debate

3. Distributional issues

- How are the risks and benefits distributed?
 - Think of the renewable energy example: benefits are nationwide while the burdens are very local
- More complex: temporal distribution of burdens & benefits
 - This gives rise to questions of intergenerational justice
- Example: fossil fuel
 - Firstly, at what pace may we consume renewable resources?
 - Secondly, what level of environmental damage (including climate change) is acceptable for the future?
- Potentially, there is a tension between spatial and temporal justice (example: climate mitigation or adaptation)

4. Acceptance for wrong reasons

- Risky technology might be accepted for morally wrong reasons
- Compensation or bribe?
 - On the one hand, distributive justice might recommend compensation
 - On the other hand: without ethical guidelines, compensation could become an "exploitative, misleading or manuipulative instrument" (Hannis and Rawles 2013)

5. Procedural justice

- Acceptance might be achieved on the basis of faulty or unfair procedures
- There must be rules and procedures for decision-making
 - They should guarantee participation
 - Fair information transfer
 - Transparancy

6. International risks

- Some risks go in essence beyond national borders
- Example 1: climate change and international consequences
- Example2: geoengineering climate change
 - Intentionally manipulating climate change in the "right direction" has serious consequences for many countries beyond the executing country
 - How to deal with unforeseen consequences?
- Example 3: nuclear power plants at the national borders
 - Austria is being surrounded by these power plants in Germany,
 Italy and the Czech Republic

7. Intergenerational risks

- Many technological innovations introduce intergenerational risks and burdens
 - Fossil fuel combustion
 - Climate change issue and geoengineering
 - Nuclear waste disposal
- Intergenerational justice issues are not necessarily taken into account in social acceptance studies.

Part 2:

Ethical analysis and the lack of empirical insights

Principles of medical ethics

- Autonomy
 - The patient has the right to refuse or choose his treatment
- Beneficence
 - The practitioner should act in the best interest of the patient
- Non-maleficence
 - Do not harm
- Justice
 - Concerns the distribution of scarce health resources, and the decision of who gets what treatment (fairness and equality)

Criteria of acceptable risk

- Some 'ethics of risk acceptance' criteria stem from biomedical ethics
 - Voluntariness, informed consent (autonomy)
 - Precautionary principle (non-maleficence)
- Some are stemming from consequentialist ethics
 - Do the benefits justify the risks?
 - Risk cost-benefit analysis
- The availability of alternative technology

ICRP principles

- Justification Principle (JP)
 - No practice shall be adopted unless its introduction produces a positive net benefit.
- Optimization Principle (OP)
 - All exposures should be as low as reasonably achievable (ALARA), economic and social factors being taken into account.
- Dose Limit Principle (DLP)
 - The doses to individuals shall not exceed the limits recommended for the appropriate circumstances by the Commission.

Two problems of ethical analysis

- Firstly, moral principles are rather abstract (or vague)
 - They need to be specified, before applying them to technology
 - Analyzing the case, identifying moral dilemmas and presuppositions etc.
 - E.g. what does intergenerational justice say about technological options for nuclear power production (Taebi 2010)
- Secondly, ethical analyses are often conceptual and they lack empirical insights (e.g. stakeholders' opinions)
 - Exceptions are in biomedical ethics where usually the interest of one individual patient is at stake
 - Stakeholders' insights need to be added for the sake of pluralism (Doorn 2012)

Part 3:

Multinational disposal and the ethical issues that social acceptance studies could easily

Why multinational repositories?

- Half a century of nuclear energy production and medical and industrial nuclear activities
- There are 30 nuclear power producing countries
 - Over 45 countries have expressed interest in nuclear power
- Currently several small members (with 1 or 2 reactors)
 - E.g. Netherlands, Slovenia, Brazil
 - The future is a large number of small nuclear power producers
- Multinational repositories have many benefits (for small members)
 - i.e. economic, safety and security (non-proliferation)
 - But they also bring many legal and political complexities

Are multinational repositories feasible?

- Some countries have already passed laws forbidding the import of foreign waste (e.g. Sweden, Argentina)
- Still, they are high on political agenda, especially in Europe
 - Both EU and EC support proposals to investigate their feasibility
 - Austria, Ireland, Netherlands, Poland, Slovakia, Bulgaria, Italy,
 Lithuania, Romania and Slovenia are exploring the possibilities

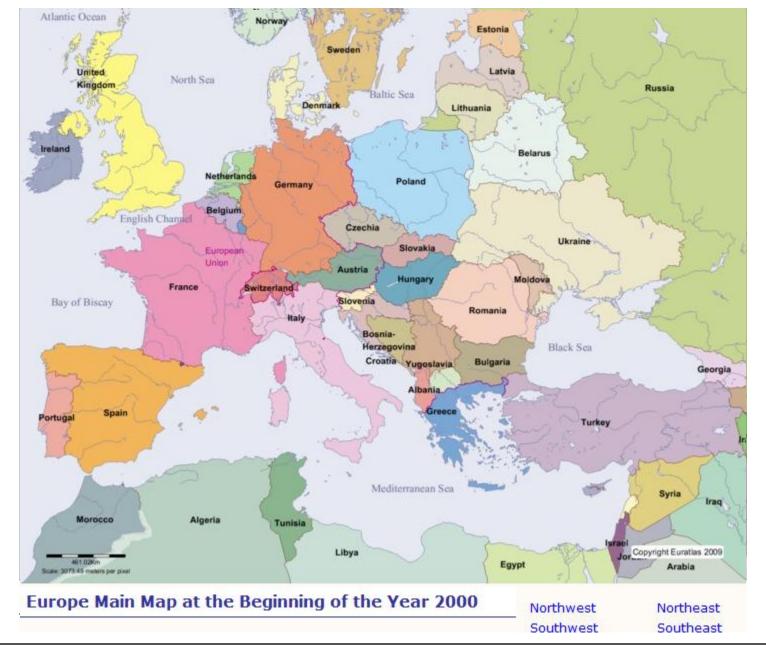
1. Intergenerational justice and joint disposal

- Geophysical and geochemical properties of host geologic site determines long-terms uncertainties
 - And how fast radiation could reach the biosphere
 - In a multinational solution we can in principle choose geological formation that helps reduce uncertainty
- When the knowledge about their location will be lost, multinational repositories seem to support long-term safety
 - They reduce number of potentially risky facilities for the future
 - E.g. future better off if 15 European countries dispose of in 5 places rather than 15 places

Intergenerational risks

Their spatial injustice

- Multinational repositories could only be successful if one nation accepts other nations' waste
- So, they essentially create intragenerational injustice
 - Since the benefits of this waste have been enjoyed in different countries while the burdens are for one country
- One way is to compensate the host country
 - This is compensation in ex-ante analysis, so compensation for potential risk imposed
 - Rather than compensation for the caused damage as in liability issues and compensation law


Moral relevance of national borders

- Proponents often cite Ljubljana as a an example
 - This city has lain in 6 different countries in 100 years
 - How relevant are national borders wen deciding on waste disposal with 200,000 years life-time?
- How legitimate is the current spatial injustice?
 - Should the neighboring countries have a voice if Slovenia decides to host multinational disposal
 - Slovenia's single reactor is shared with Croatia

Justice in multinational repositories

	Distributive justice	Procedural justice
Spatial (empirical & normative)	Fair risk benefit distribution What is appropriate compensation	Decision-making procedure Informed consent Information provision Stakeholders involvement Who to compensate How to organize compensation Who should repair future damage?
Temporal (normative)	Burden/benefit distribution	Not applicable

What if the public accepts them?

- The acceptance might be the result of an unequal starting position
 - Less wealthy countries would be opener to economic incentives
- Yet, there will be an inherent injustice created
 - Comparable to exporting of chemical waste from industrialized to nonindustrialized (mainly African) countries in 70s & 80s
 - This culminated in the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal

Part 4:

Moving towards juxtaposing social acceptance and ethical acceptability

A Rawlsian framework

Acceptance necessary but not sufficient

- If we solely focus on social acceptance studies, we might overlook important ethical issues
- This might result in waste automatically being exported from North to South-Europe and from West to East-Europe
 - This might eventually result in legal bans for exporting and import of nuclear waste
- The broader ethical issues need to be addressed
 - But How?

Wide reflective equilibrium (Rawls)

- Bottom-up ethics: intuitive judgments resulting in principles
- Top down ethics: deducing principles from moral theories

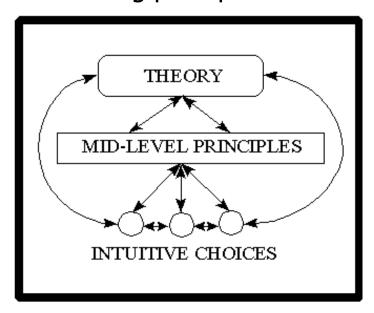
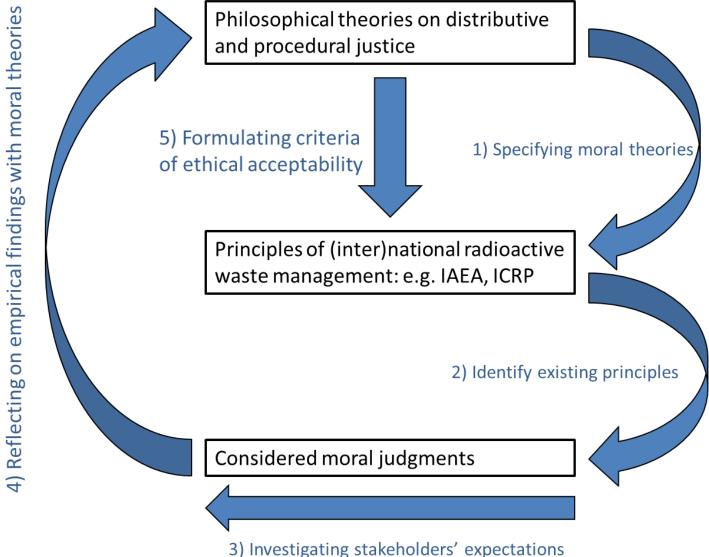
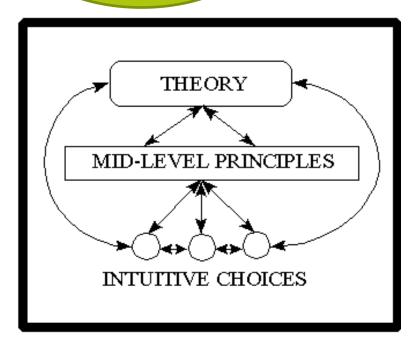



Illustration from Humanity Educating Philosophy, Jeffrey W. Bulger

http://www.bu.edu/wcp/Papers/TEth/TEthBulg.htm



Free floating:

Reasonableness
Tolerability
Trust/honesty
Accountability
Inclusiveness, etc.

Beneficence, non-maleficence, dignity, prudence, etc.

> Justification Optimization Dose Limit Etc.

Considered moral judgments of individuals regarding radiation exposure

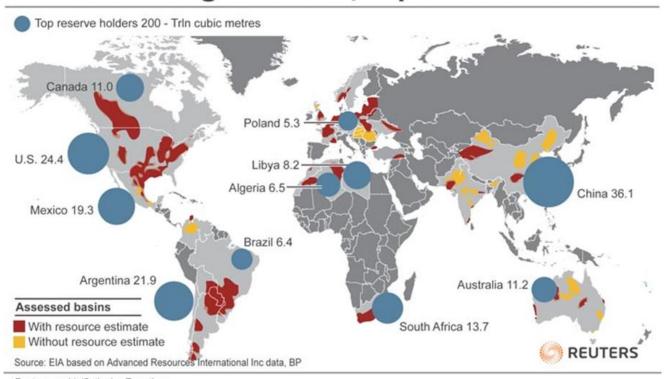
Stakeholders engagement

- This approach is in line with the ICRP wish to engage stakeholders
- This approach is similar to other endeavors in other fields
 - Responsible innovation
 - Empirical ethics
 - Ethics of technology

Questions and challenges

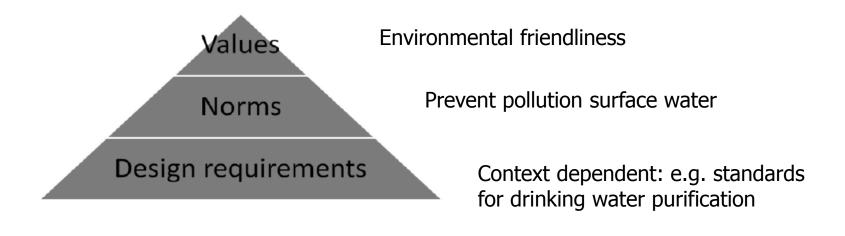
- How should we include opinions? Methodological challenges
- Whose opinion should we consider?
- How do we decide which opinion to include or to exclude, sufficiently taking into account the plurality of the society?
- Should we seek for these opinions in specific application area?
- If the stakeholders engagement leads to adjustments as the WRE approach suggests – are those changes to the general or specific principles?

Part 5:

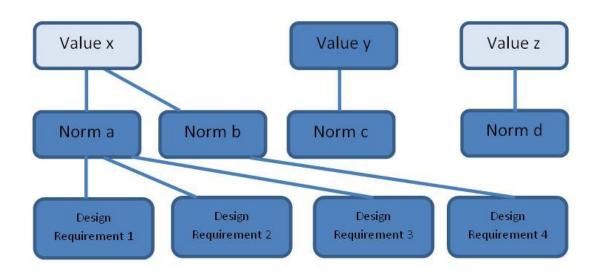

How to specify values, norms/principles and guidelines; an example

Shale gas: game changer?

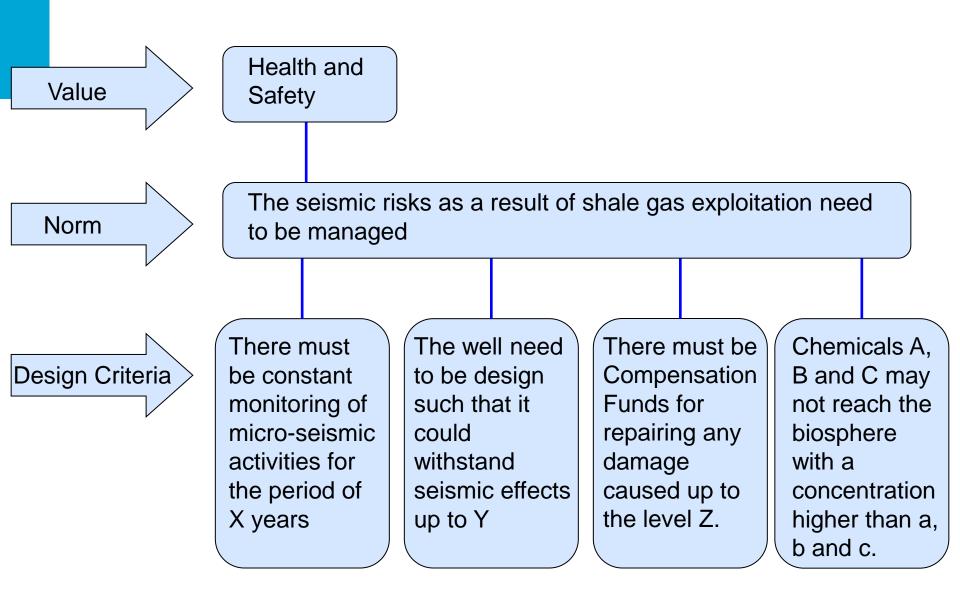
Global shale gas basins, top reserve holders


Reuters graphic/Catherine Trevethan

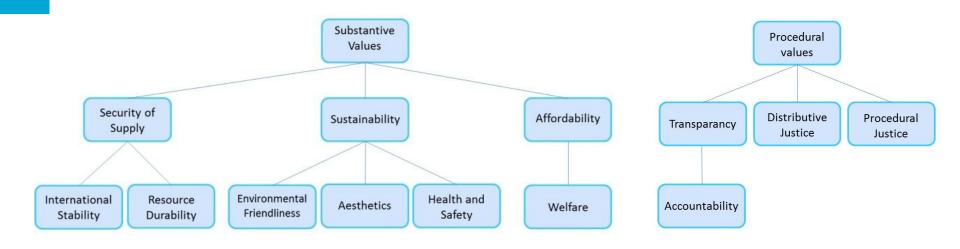
Specifying values


- Values: Generally considered important to be upheld
- Norms: Formulated to realise values
- Design criteria: Very specific criteria for complying with norms

Construction of value hierarchy



- Building on (Van de Poel forthcoming)
 - A value hierarchy can be constructed top-down or bottom-up
 - Most arguments are voiced at the level of norms



Example of a value hierarchy

Values conflicts in shale gas debate

Building on: Correlje, A., Cuppen, E., Dignum, M., Pesch, U. and B. Taebi, Forthcoming. Responsible Innovation in Energy Projects: Values in the Design of Technologies, Institutions and Stakeholder Interactions. In *Responsible Innovation. Volume II*, edited by J. Van den Hoven, E. J. Koops, H. A. Romijn, T. E. Swierstra and I. Oosterlaken: Springer:

The analogy with (re-)designing the system of RP

Values

RP Core values such as non-maleficence

Norms

RP Core principles such as optimization

Design requirements

RP guidelines, describing how principles should be applied (test of tolerability, reasonableness, etc.)

Conclusions and recommendations

- We need to move towards broad assessments of new technology, certainly those with international and intergenerational risks
- Good governance of risky technology requires us to assess both the social acceptance and the ethical acceptability of new technology
- We should distinguish between the values, principles and guidelines for re-designing the system of radiation protection

Thank you for your attention

Comments and questions are appreciated!

now or later by email

B.Taebi@tudelft.nl

www.ethicsandtechnology.eu/taebi

Two forthcoming publications

- Taebi, B. and I. R. Van de Poel, eds. 2015. Socio-technical challenges of nuclear power production and waste disposal in the post-Fukushima Era. Special Issue of *Journal of Risk Research*. Click here.
- Taebi, B. and S. Roeser, eds. 2015. The Ethics of Nuclear Energy. Risk, Justice and Democracy in the post-Fukushima Era, Cambridge: Cambridge University Press. Click <a href=here.

